
January 2015 DocID018757 Rev 7 1/36

STM32F20x and STM32F21x
Errata sheet

STM32F205/207xx and STM32F215/217xx
 device limitations

Silicon identification

This errata sheet applies to the revision “Y”, “X”, “1”, “V” and “2” of STMicroelectronics
STM32F205xx/STM32F207xx and STM32F215xx/STM32F217xx microcontroller families.
In this document they will be referred to as Root part number 1 and Root part number 2,
respectively, unless otherwise specified.

The STM32F205xx/STM32F207xx and STM32F215xx/STM32F217xx feature revision
r2p0-v2 of the ARM™ 32-bit Cortex®-M3 core, for which an errata notice is also available
(see Section 1 for details).

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

• by the revision code marked below the order code on the device package

• by the last three digits of the Internal order code printed on the box label

Table 1. Device Identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the
STM32F20x and STM32F21x reference manual for details on how to find the revision code).

Order code Revision code marked on device(2)

2. Refer to datasheet for details on how to identify the revision code according to the packages.

STM32F205xx, STM32F207xx “Y”, “X”, “1”, “V” and “2”

STM32F215xx, STM32F217xx “Y”, “X”, “1”, “V” and “2”

Table 2. Device summary

Reference Part number

STM32F205xx

STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF,
STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE,
STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE,
STM32F205ZF, STM32F205ZG

STM32F207xx
STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC,
STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC,
STM32F207VE, STM32F207VF, STM32F207VG

STM32F215xx
STM32F215RG, STM32F215VG, STM32F215ZG, STM32F215RE,
STM32F215VE, STM32F215ZE

STM32F217xx
STM32F217VG, STM32F217IG, STM32F217ZG, STM32F217VE,
STM32F217IE, STM32F217ZE

www.st.com

http://www.st.com

Contents STM32F20x and STM32F21x

2/36 DocID018757 Rev 7

Contents

1 ARM™ 32-bit Cortex®-M3 limitations . 6

1.1 Cortex-M3 limitations description for the
STM32F20x and STM32F21x devices . 6

1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register
when interrupted or faulted . 6

1.1.2 Cortex-M3 event register is not set by interrupts and debug 7

1.1.3 Cortex-M3 interrupted loads to stack pointer can cause
erroneous behavior . 7

1.1.4 Cortex-M3 SVC and BusFault/MemManage may occur out of order . . . 8

2 STM32F20x and STM32F21x silicon limitations 9

2.1 System limitations . 12

2.1.1 ART Accelerator prefetch queue instruction is not supported 12

2.1.2 Debugging Stop mode and system tick timer . 12

2.1.3 Debugging Stop mode with WFE entry . 12

2.1.4 Wakeup sequence from Standby mode when using more than
one wakeup source . 13

2.1.5 Full JTAG configuration without NJTRST pin cannot be used 13

2.1.6 DBGMCU_CR register cannot be read by user software 13

2.1.7 Configuration of PH10 and PI10 as external interrupts is erroneous . . . 14

2.1.8 DMA2 data corruption when managing AHB and APB peripherals in a
concurrent way . 14

2.1.9 Slowing down APB clock during a DMA transfer 14

2.1.10 MPU attribute to RTC and IWDG registers could be managed
incorrectly . 15

2.1.11 Delay after an RCC peripheral clock enabling . 15

2.1.12 Battery charge monitoring lower than 2.4 V . 15

2.1.13 Internal noise impacting the ADC accuracy . 16

2.2 IWDG peripheral limitation . 16

2.2.1 RVU and PVU flags are not reset in STOP mode 16

2.3 I2C peripheral limitations . 16

2.3.1 SMBus standard not fully supported . 16

2.3.2 Start cannot be generated after a misplaced Stop 17

2.3.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 17

2.3.4 Data valid time (tVD;DAT) violated without the OVR flag being set 17

DocID018757 Rev 7 3/36

STM32F20x and STM32F21x Contents

4

2.3.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V . 18

2.4 I2S peripheral limitations . 18

2.4.1 Wrong WS signal generation in 16-bit extended to 32-bit PCM
long synchronisation mode . 18

2.4.2 In I2S slave mode, WS level must be set by the external master
when enabling the I2S . 19

2.4.3 I2S slave mode desynchronization with the master during
communication . 19

2.5 USART peripheral limitations . 19

2.5.1 Idle frame is not detected if receiver clock speed is deviated 19

2.5.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register . 20

2.5.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 20

2.5.4 Break frame is transmitted regardless of nCTS input line status 20

2.5.5 nRTS signal abnormally driven low after a protocol violation 21

2.5.6 Start bit detected too soon when sampling for NACK signal from the
smartcard . 21

2.5.7 Break request can prevent the Transmission Complete flag (TC) from
being set . 22

2.5.8 Guard time is not respected when data are sent on TXE events 22

2.5.9 nRTS is active while RE or UE = 0 . 22

2.6 bxCAN peripheral limitations . 22

2.6.1 bxCAN time triggered communication mode not supported 22

2.7 OTG_FS peripheral limitations . 23

2.7.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously . 23

2.7.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured . 23

2.7.3 Host channel-halted interrupt not generated when the channel is
disabled . 23

2.7.4 Error in software-read OTG_FS_DCFG register values 24

2.7.5 Minimum AHB frequency to guarantee correct operation of USB OTG
FS peripheral . 24

2.8 Ethernet peripheral limitations . 24

2.8.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads . 24

2.8.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames . 25

Contents STM32F20x and STM32F21x

4/36 DocID018757 Rev 7

2.8.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes 25

2.8.4 Transmit frame data corruption . 25

2.8.5 Successive write operations to the same register might
not be fully taken into account . 26

2.8.6 MCO PLL clock pins not compatible with Ethernet IEEE802.3 long term
 jitter specifications . 29

2.9 FSMC peripheral limitations . 29

2.9.1 Dummy read cycles inserted when reading synchronous memories . . . 29

2.9.2 FSMC synchronous mode and NWAIT signal disabled 29

2.9.3 FSMC NOR Flash/PSRAM controller asynchronous access on
bank 2 to 4 when bank 1 is in synchronous mode
(CBURSTRW bit is set) . 30

2.10 SDIO peripheral limitations . 30

2.10.1 SDIO HW flow control . 30

2.10.2 Wrong CCRCFAIL status after a response without CRC is received . . . 30

2.10.3 SDIO clock divider BYPASS mode may not work properly 31

2.10.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode 31

2.10.5 CE-ATA multiple write command and card busy signal management . . 31

2.10.6 No underrun detected with wrong data transmission 31

2.11 ADC limitations . 32

2.11.1 ADC sequencer modification during conversion 32

2.12 DAC limitations . 32

2.12.1 DMA underrun flag management . 32

2.12.2 DMA request not automatically cleared by DMAEN=0 32

3 Revision history . 34

DocID018757 Rev 7 5/36

STM32F20x and STM32F21x List of tables

5

List of tables

Table 1. Device Identification . 1
Table 2. Device summary . 1
Table 3. Cortex-M3 core limitations and impact on microcontroller behavior 6
Table 4. Summary of silicon limitations . 9
Table 5. Impacted registers and bits. 26
Table 6. Document revision history . 34

ARM™ 32-bit Cortex®-M3 limitations STM32F20x and STM32F21x

6/36 DocID018757 Rev 7

1 ARM™ 32-bit Cortex®-M3 limitations

An errata notice of the STM32F20x and STM32F21x core is available on ARM™ website
http://infocenter.arm.com.

All the described limitations are minor and related to the revision r2p0-v2 of the Cortex-M3
core. Table 3 summarizes these limitations and their implications on the behavior of high-
density STM32F20x and STM32F21x devices.

1.1 Cortex-M3 limitations description for the
STM32F20x and STM32F21x devices

Only the limitations described below have an impact, even though minor, on the
implementation of STM32F20x and STM32F21x devices.

All the other limitations described in the ARM errata notice (and summarized in Table 3
above) have no impact and are not related to the implementation of STM32F20x and
STM32F21x devices (Cortex-M3 r2p0-v2).

1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register
when interrupted or faulted

Description

The Cortex-M3 Core has a limitation when executing an LDRD instruction from the system-
bus area, with the base register in a list of the form LDRD Ra, Rb, [Ra, #imm]. The
execution may not complete after loading the first destination register due to an interrupt
before the second loading completes or due to the second loading getting a bus fault.

Workarounds

1. This limitation does not impact the STM32F20x and STM32F21x code execution when
executing from the embedded Flash memory, which is the standard use of the
microcontroller.

2. Use the latest compiler releases. As of today, they no longer generate this particular
sequence. Moreover, a scanning tool is provided to detect this sequence on previous
releases (refer to your preferred compiler provider).

Table 3. Cortex-M3 core limitations and impact on microcontroller behavior

ARM ID
ARM

category
ARM

 summary of errata

Impact on
STM32F20x and

STM32F21x
devices

752419 Cat 2 Interrupted loads to SP can cause erroneous behavior Minor

740455 Cat 2 SVC and BusFault/MemManage may occur out of order Minor

602117 Cat 2
LDRD with base in list may result in incorrect base register
when interrupted or faulted

Minor

563915 Cat 2 Event register is not set by interrupts and debug Minor

DocID018757 Rev 7 7/36

STM32F20x and STM32F21x ARM™ 32-bit Cortex®-M3 limitations

35

1.1.2 Cortex-M3 event register is not set by interrupts and debug

Description

When interrupts related to a WFE occur before the WFE is executed, the event register
used for WFE wakeup events is not set and the event is missed. Therefore, when the WFE
is executed, the core does not wake up from WFE if no other event or interrupt occur.

Workaround

Use STM32F20x and STM32F21x external events instead of interrupts to wake up the core
from WFE by configuring an external or internal EXTI line in event mode.

1.1.3 Cortex-M3 interrupted loads to stack pointer can cause
erroneous behavior

Description

An interrupt occurring during the data-phase of a single word load to the stack pointer
(SP/R13) can caused an erroneous behavior of the device. In addition, returning from the
interrupt results in the load instruction being executed an additional time.

For all the instructions performing an update of the base register, the base register is
erroneously updated on each execution, resulting in the stack pointer being loaded from an
incorrect memory location.

The instructions affected by this limitation are the following:

• LDR SP, [Rn],#imm

• LDR SP, [Rn,#imm]!

• LDR SP, [Rn,#imm]

• LDR SP, [Rn]

• LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

Both issues can be solved by replacing the direct load to the stack pointer by an
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by

LDR R2,[R0]

MOV SP,R2

ARM™ 32-bit Cortex®-M3 limitations STM32F20x and STM32F21x

8/36 DocID018757 Rev 7

1.1.4 Cortex-M3 SVC and BusFault/MemManage may occur out of order

Description

If an SVC exception is generated by executing the SVC instruction while the next instruction
fetch is faulted, then the MemManage or BusFault handler may be entered even though the
faulted instruction following the SVC instruction should not have been executed.

Workaround

A workaround is required only if the SVC handler does not return to the return address that
has been stacked for the SVC exception, and the instruction access after the SVC will fault.
In this case, insert padding (e.g. NOP instructions) between the SVC instruction and the
faulting code.

DocID018757 Rev 7 9/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2 STM32F20x and STM32F21x silicon limitations

Table 4 gives quick references to all documented limitations.

Legend for Table 4: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 4. Summary of silicon limitations

Links to silicon limitations
Revisions

“Y”, “X”, “1”,
“V” and “2”

Section 2.1: System
limitations

Section 2.1.1: ART Accelerator prefetch queue instruction is not supported N

Section 2.1.2: Debugging Stop mode and system tick timer A

Section 2.1.3: Debugging Stop mode with WFE entry A

Section 2.1.4: Wakeup sequence from Standby mode when using more
than one wakeup source

A

Section 2.1.5: Full JTAG configuration without NJTRST pin cannot be
used

A

Section 2.1.6: DBGMCU_CR register cannot be read by user software N

Section 2.1.7: Configuration of PH10 and PI10 as external interrupts is
erroneous

N

Section 2.1.8: DMA2 data corruption when managing AHB and APB
peripherals in a concurrent way

A

Section 2.1.9: Slowing down APB clock during a DMA transfer A

Section 2.1.10: MPU attribute to RTC and IWDG registers could be
managed incorrectly

A

Section 2.1.11: Delay after an RCC peripheral clock enabling A

Section 2.1.12: Battery charge monitoring lower than 2.4 V P

Section 2.1.13: Internal noise impacting the ADC accuracy A

Section 2.2: IWDG
peripheral limitation

Section 2.2.1: RVU and PVU flags are not reset in STOP mode A

Section 2.3: I2C
peripheral limitations

Section 2.3.1: SMBus standard not fully supported A

Section 2.3.2: Start cannot be generated after a misplaced Stop A

Section 2.3.3: Mismatch on the “Setup time for a repeated Start condition”
timing parameter

A

Section 2.3.4: Data valid time (tVD;DAT) violated without the OVR flag
being set

A

Section 2.3.5: Both SDA and SCL maximum rise time (tr) violated when
VDD_I2C bus higher than ((VDD+0.3) / 0.7) V

A

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

10/36 DocID018757 Rev 7

Section 2.4: I2S
peripheral limitations

Section 2.4.1: Wrong WS signal generation in 16-bit extended to 32-bit
PCM long synchronisation mode

A

Section 2.4.2: In I2S slave mode, WS level must be set by the external
master when enabling the I2S

A

Section 2.4.3: I2S slave mode desynchronization with the master during
communication

A

Section 2.5: USART
peripheral limitations

Section 2.5.1: Idle frame is not detected if receiver clock speed is deviated N

Section 2.5.2: In full duplex mode, the Parity Error (PE) flag can be cleared
by writing to the data register

A

Section 2.5.3: Parity Error (PE) flag is not set when receiving in Mute
mode using address mark detection

N

Section 2.5.4: Break frame is transmitted regardless of nCTS input line
status

N

Section 2.5.5: nRTS signal abnormally driven low after a protocol violation A

Section 2.5.6: Start bit detected too soon when sampling for NACK signal
from the smartcard

N

Section 2.5.7: Break request can prevent the Transmission Complete flag
(TC) from being set

A

Section 2.5.8: Guard time is not respected when data are sent on TXE
events

A

Section 2.5.9: nRTS is active while RE or UE = 0 A

Section 2.6: bxCAN
peripheral limitations

Section 2.6.1: bxCAN time triggered communication mode not supported N

Section 2.7: OTG_FS
peripheral limitations

Section 2.7.1: Data in RxFIFO is overwritten when all channels are
disabled simultaneously

A

Section 2.7.2: OTG host blocks the receive channel when receiving IN
packets and no TxFIFO is configured

A

Section 2.7.3: Host channel-halted interrupt not generated when the
channel is disabled

A

Section 2.7.4: Error in software-read OTG_FS_DCFG register values A

Section 2.7.5: Minimum AHB frequency to guarantee correct operation of
USB OTG FS peripheral

N

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Revisions

“Y”, “X”, “1”,
“V” and “2”

DocID018757 Rev 7 11/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

Note: Revisions “2”, “V”, “1” and “X” differ from revision “Y” as they improve the LSE (Low Speed
External oscillator) power consumption, without fixing limitations. Refer to STM32F20xx and
STM32F21xx datasheets.

Section 2.8: Ethernet
peripheral limitations

Section 2.8.1: Incorrect layer 3 (L3) checksum is inserted in transmitted
IPv6 packets without TCP, UDP or ICMP payloads

A

Section 2.8.2: The Ethernet MAC processes invalid extension headers in
the received IPv6 frames

N

Section 2.8.3: MAC stuck in the Idle state on receiving the TxFIFO flush
command exactly 1 clock cycle after a transmission completes

A

Section 2.8.4: Transmit frame data corruption A

Section 2.8.5: Successive write operations to the same register might not
be fully taken into account

A

Section 2.8.6: MCO PLL clock pins not compatible with Ethernet
IEEE802.3 long term jitter specifications

A

Section 2.9: FSMC
peripheral limitations

Section 2.9.1: Dummy read cycles inserted when reading synchronous
memories

N

Section 2.9.2: FSMC synchronous mode and NWAIT signal disabled A

Section 2.9.3: FSMC NOR Flash/PSRAM controller asynchronous access
on bank 2 to 4 when bank 1 is in synchronous mode (CBURSTRW bit is
set)

A

Section 2.10: SDIO
peripheral limitations

Section 2.10.1: SDIO HW flow control N

Section 2.10.2: Wrong CCRCFAIL status after a response without CRC is
received

N

Section 2.10.3: SDIO clock divider BYPASS mode may not work properly A

Section 2.10.4: Data corruption in SDIO clock dephasing (NEGEDGE)
mode

N

Section 2.10.5: CE-ATA multiple write command and card busy signal
management

A

Section 2.10.6: No underrun detected with wrong data transmission A

Section 2.11: ADC
limitations

Section 2.11.1: ADC sequencer modification during conversion A

Section 2.12: DAC
limitations

Section 2.12.1: DMA underrun flag management A

Section 2.12.2: DMA request not automatically cleared by DMAEN=0 A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations
Revisions

“Y”, “X”, “1”,
“V” and “2”

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

12/36 DocID018757 Rev 7

2.1 System limitations

2.1.1 ART Accelerator prefetch queue instruction is not supported

Description

The ART Accelerator prefetch queue instruction is not supported when VDD is lower than

2.1 V.
This limitation does not prevent the ART Accelerator from using the cache enable/disable
capability and the selection of the number of wait states according to the system frequency.

Workaround

None. Refer to application note AN3430 for details on how to adjust performance and power
consumption.

2.1.2 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it will wake up the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.1.3 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register),
this allows software debugging during Stop mode.

However, if the application software uses the WFE instruction to enter Stop mode, after
wakeup some instructions could be missed if the WFE is followed by sequential instructions.
This affects only Stop debug mode with WFE entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated
function with 1 instruction (NOP) between the execution of the WFE and the Bx LR.

Example:

__asm void _WFE(void) {

WFE

NOP

BX lr }

DocID018757 Rev 7 13/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2.1.4 Wakeup sequence from Standby mode when using more than
one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which
generates the wakeup flag (WUF). The WUF needs to be cleared prior to Standby mode
entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of the WUF (by
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector.
As a consequence, the MCU might not be able to wake up from Standby mode.

Workaround

To avoid this problem, the following sequence should be applied before entering
Standby mode:

• Disable all used wakeup sources,

• Clear all related wakeup flags,

• Re-enable all used wakeup sources,

• Enter Standby mode

Note: Be aware that, when applying this workaround, if one of the wakeup sources is still kept
high, the MCU enters Standby mode but then it wakes up immediately generating a power
reset.

2.1.5 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if
the NJTRST pin (PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is
impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.1.6 DBGMCU_CR register cannot be read by user software

Description

The DBGMCU_CR debug register is accessible only in debug mode (not accessible by the
user software). When this register is read in user mode, the returned value is 0x00.

Workaround

None.

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

14/36 DocID018757 Rev 7

2.1.7 Configuration of PH10 and PI10 as external interrupts is erroneous

Description

PH10 or PI10 are selected as the source for EXTI10 external interrupt by setting bits
EXTI10[3:0] of SYSCFG_EXTICR3 register to 0x0111 or 0x1000, respectively. However,
this erroneous operation enables PH2 and PI2 as external interrupt inputs.

As a result, it is not possible to use PH10/PI10 as interrupt sources if PH2/PI2 are not
selected as the interrupt source, as well. This means that bits EXTI10[3:0] of
SYSCFG_EXTICR3 register and bits EXTI2[3:0] of SYSCFG_EXTICR1 should be
programmed to the same value:

• 0x0111 to select PH10/PH2

• 0x1000 to select PI10/PI2

Workaround

None.

2.1.8 DMA2 data corruption when managing AHB and APB peripherals in a
concurrent way

Description

When the DMA2 is managing AHB Peripherals (only peripherals embedding FIFOs) and
also APB transfers in a concurrent way, this generates a data corruption (multiple DMA
access).

When this condition occurs:

• The data transferred by the DMA to the AHB peripherals could be corrupted in case of
a FIFO target.

• For memories, it will result in multiple access (not visible by the Software) and the data
is not corrupted.

• For the DCMI, a multiple unacknowledged request could be generated, which implies
an unknown behavior of the DMA.

AHB peripherals embedding FIFO are DCMI, CRYPTO, and HASH. On sales types without
CRYPTO, only the DCMI is impacted. External FIFO controlled by the FSMC is also
impacted.

Workaround

Avoid concurrent AHB (DCMI, CRYPTO, HASH, FSMC with external FIFO) and APB
transfer management using the DMA2.

2.1.9 Slowing down APB clock during a DMA transfer

Description

When the CPU modifies the APB clock (slows down the clock: changes AHB/APB prescaler
from 1 to 2, 1 to 4, 1 to 8 or 1 to 16) while the DMA is performing a write access to the same
APB peripherals, the current DMA transfer will be blocked. Only system reset will recover.

DocID018757 Rev 7 15/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

Workaround

Before slowing down the APB clock, wait until the end of the DMA transfer on this APB.

2.1.10 MPU attribute to RTC and IWDG registers could be managed
incorrectly

Description

If the MPU is used and the non bufferable attribute is set to the RTC or IWDG memory map
region, the CPU access to the RTC or IWDG registers could be treated as bufferable,
provided that there is no APB prescaler configured (AHB/APB prescaler is equal to 1).

Workaround

If the non bufferable attribute is required for these registers, the software could perform a
read after the write to guaranty the completion of the write access.

2.1.11 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling
should be taken into account in order to manage the peripheral read/write to registers.

This delay depends on the peripheral’s mapping:

• If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

• If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB
prescaler) cycles.

Workarounds

1. Use the DSB instruction to stall the Cortex-M CPU pipeline until the instruction is
completed.

2. Insert “n” NOPs between the RCC enable bit write and the peripheral register writes
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

2.1.12 Battery charge monitoring lower than 2.4 V

Description

If (VDD = VDDA) is lower than or equal to 2.4 V, the VBAT conversion correctness is not
guaranteed in full temperature and voltage ranges. When VBAT is set, the voltage divider
bridge is enabled and VBAT/2 is connected to the ADC input. In order to monitor the battery
charge correctly, the input of the ADC must not be higher than (VDDA - 0.6 V).

Thus, VBAT/2 < VDD – 0.6 V implies that VDD > 2.4 V.

Workaround

None. (VDD = VDDA) should be greater than 2.4 V.

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

16/36 DocID018757 Rev 7

2.1.13 Internal noise impacting the ADC accuracy

Description

An internal noise generated on VDD supplies and propagated internally may impact the ADC
accuracy.

This noise is always active whatever the power mode of the MCU (RUN or Sleep).

Workarounds

Two steps could be followed to adapt the accuracy level to the application requirements:

1. Configure the Flash ART as Prefetch OFF and (Data + Instruction) cache ON.

2. Use averaging and filtering algorithms on ADC output codes.

For more workaround details of this limitation, please refer to AN4073.

2.2 IWDG peripheral limitation

2.2.1 RVU and PVU flags are not reset in STOP mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register,
the application software must wait for the RVU or PVU flag to be reset. However, since the
RVU/PVU bit is not reset after exiting the Stop mode, the software goes into an infinite loop
and the independent watchdog (IWDG) generates a reset after the programmed timeout
period.

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register is reset before entering the Stop
mode.

2.3 I2C peripheral limitations

2.3.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

DocID018757 Rev 7 17/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.3.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error), the peripheral cannot
generate a Start anymore.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

A software workaround consists in asserting the software reset using the SWRST bit in the
I2C_CR1 control register.

2.3.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The issue can occur only in the following configuration:

• in Master mode

• in Standard mode at a frequency between 88 kHz and 100 kHz (no issue in Fast-mode)

• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns, the issue cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode, if supported by the slave.

2.3.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well
as the maximum data hold time of the current data (tHD;DAT)) under the conditions described
below. This violation cannot be detected because the OVR flag is not set (no transmit buffer
underrun is detected).

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

18/36 DocID018757 Rev 7

This issue can occur only under the following conditions:

• in Slave transmit mode

• with clock stretching disabled (NOSTRETCH=1)

• if the software is late to write the DR data register, but not late enough to set the OVR
flag (the data register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software is fast enough when polling
the TXE or ADDR flag to immediately write to the DR data register. For instance, use an
interrupt on the TXE or ADDR flag and boost its priority to the higher level.

2.3.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V

Description

When an external legacy I2C bus voltage (VDD_I2C) is set to 5 V while the MCU is powered
from VDD, the internal 5-Volt tolerant circuitry is activated as soon the input voltage (VIN)
reaches the VDD + diode threshold level. An additional internal large capacitance then
prevents the external pull-up resistor (RP) from rising the SDA and SCL signals within the
maximum timing (tr) which is 300 ns in fast mode and 1000 ns in Standard mode.

The rise time (tr) is measured from VIL and VIH with levels set at 0.3VDD_I2C and
0.7VDD_I2C.

Workaround

The external VDD_I2C bus voltage should be limited to a maximum value of
((VDD+0.3) / 0.7) V. As a result, when the MCU is powered from VDD=3.3 V, VDD_I2C
should not exceed 5.14 V to be compliant with I2C specifications.

2.4 I2S peripheral limitations

2.4.1 Wrong WS signal generation in 16-bit extended to 32-bit PCM
long synchronisation mode

Description

When I2S is master with PCM long synchronization is selected as16-bit data frame
extended to 32-bit, the WS signal is generated every 16 bits rather than every 32 bits.

Workaround

Only the 16-bit mode with no data extension can be used when the I2S is master and when
the selected mode has to be PCM long synchronization mode.

DocID018757 Rev 7 19/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2.4.2 In I2S slave mode, WS level must be set by the external master
when enabling the I2S

Description

In slave mode, the WS signal level is used only to start the communication. If the I2S (in
slave mode) is enabled while the master is already sending the clock and the WS signal
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts
communicating data immediately. In this case, the master and slave will be desynchronized
throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

• High level when the I2S protocol is selected.

• Low level when the LSB or MSB-justified mode is selected.

2.4.3 I2S slave mode desynchronization with the master during
communication

Description

In I2S slave mode, if glitches on SCK or WS signals are generated at an unexpected time, a
desynchronization of the master and the slave occurs. No error is reported to allow audio
system to re-synchronize.

Workaround

The following workarounds can be applied in order to detect and react after a
desynchronization by disabling and enabling I2S peripheral in order to resynchronize with
the master.

1. Monitoring the I2S WS signal through an external Interrupt to check the I2S WS signal
status.

2. Monitoring the I2S clock signal through an input capture interrupt to check the I2S clock
signal status.

3. Monitoring the I2S clock signal through an input capture interrupt and the I2S WS
signal via an external interrupt to check the I2S clock and I2S WS signals status.

2.5 USART peripheral limitations

2.5.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

20/36 DocID018757 Rev 7

Workaround

None.

2.5.2 In full duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data to the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.5.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.5.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of the current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

Workaround

None.

DocID018757 Rev 7 21/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2.5.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected which indicates that data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication
protocol, which is not the case in most applications.

Two workarounds can be used:

• After data reception and before reading the data in the data register, the software takes
over the control of the nRTS signal as a GPIO and holds it high as long as needed. If
the USART device is not ready, the software holds the nRTS pin high, and releases it
when the device is ready to receive new data.

• The time required by the software to read the received data must always be lower than
the duration of the second data reception. For example, this can be ensured by treating
all the receptions by DMA mode.

2.5.6 Start bit detected too soon when sampling for NACK signal from the
smartcard

Description

According to ISO/IEC 7816-3 standard, when a character parity error is detected, the
receiver shall transmit a NACK error signal 10.5 ± 0.2 ETUs after the character START bit
falling edge. In this case, the transmitter should be able to detect correctly the NACK signal
until 11 ± 0.2 ETUs after the character START bit falling edge.

In Smartcard mode, the USART peripheral monitors the NACK signal during the receiver
time frame (10.5 ± 0.2 ETUs), while it should wait for it during the transmitter one (11 ± 0.2
ETUs). In real cases, this would not be a problem as the card itself needs to respect a 10.7
ETU period when sending the NACK signal. However this may be an issue to undertake a
certification.

Workaround

None

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

22/36 DocID018757 Rev 7

2.5.7 Break request can prevent the Transmission Complete flag (TC) from
being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set if the following conditions are met:

• CTS hardware flow control is enabled.

• D1 is being transmitted.

• A break transfer is requested before the end of D1 transfer.

• nCTS is de-asserted before the end of D1 data transfer.

Workaround

If the application needs to detect the end of a data transfer, the break request should be
issued after checking that the TC flag is set.

2.5.8 Guard time is not respected when data are sent on TXE events

Description

In smartcard mode, when sending a data on TXE event, the programmed guard time is not
respected i.e. the data written in the data register is transferred on the bus without waiting
the completion of the guardtime duration corresponding to the previous transmitted data.

Workaround

Write the data after TC is set because in smartcard mode, the TC flag is set at the end of the
guard time duration.

2.5.9 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as RTSE bit is set even if the USART is disabled
(UE =0) or if the receiver is disabled (RE=0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as an alternate function after setting the UE and RE bits.

2.6 bxCAN peripheral limitations

2.6.1 bxCAN time triggered communication mode not supported

Description

The time triggered communication mode described in the reference manual (RM0033) is not
supported. As a consequence, time stamp values are not available. TTCM bit must be kept
cleared in the CAN_MCR register (time triggered communication mode disabled).

DocID018757 Rev 7 23/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

Workaround

None.

2.7 OTG_FS peripheral limitations

2.7.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously

Description

If the available RxFIFO is just large enough to host 1 packet + its data status, and is
currently occupied by the last received data + its status and, at the same time, the
application requests that more IN channels be disabled, the OTG_FS peripheral does not
first check for available space before inserting the disabled status of the IN channels. It just
inserts them by overwriting the existing data payload.

Workaround

Use one of the following recommendations:

1. Configure the RxFIFO to host a minimum of 2 × MPSIZ + 2 × data status entries.

2. The application has to check the RXFLVL bit (RxFIFO non-empty) in the
OTG_FS_GINTSTS register before disabling each IN channel. If this bit is not set, then
the application can disable an IN channel at a time. Each time the application disables
an IN channel, however, it first has to check that the RXFLVL bit = 0 condition is true.

2.7.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured

Description

When receiving data, the OTG_FS core erroneously checks for available TxFIFO space
when it should only check for RxFIFO space. If the OTG_FS core cannot see any space
allocated for data transmission, it blocks the reception channel and no data is received.

Workaround

Set at least one TxFIFO equal to the maximum packet size. In this way, the host application,
which intends to supports only IN traffic, also has to allocate some space for the TxFIFO.

Since a USB host is expected to support any kind of connected endpoint, it is good practice
to always configure enough TxFIFO space for OUT endpoints.

2.7.3 Host channel-halted interrupt not generated when the channel is
disabled

Description

When the application enables, then immediately disables the host channel before the
OTG_FS host has had time to begin the transfer sequence, the OTG_FS core, as a host,
does not generate a channel-halted interrupt. The OTG_FS core continues to operate
normally.

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

24/36 DocID018757 Rev 7

Workaround

Do not disable the host channel immediately after enabling it.

2.7.4 Error in software-read OTG_FS_DCFG register values

Description

When the application writes to the DAD and PFIVL bitfields in the OTG_FS_DCFG register,
and then reads the newly written bitfield values, the read values may not be correct.

The values written by the application, however, are correctly retained by the core, and the
normal operation of the device is not affected.

Workaround

Do not read from the OTG_FS_DCFG register’s DAD and PFIVL bitfields just after
programming them.

2.7.5 Minimum AHB frequency to guarantee correct operation of USB OTG
FS peripheral

Description

In order to guarantee correct operation of the USB OTG FS peripheral, the AHB frequency
should be configured to be not less than 14.2 MHz.

Workaround

None.

2.8 Ethernet peripheral limitations

2.8.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads

Description

The application provides the per-frame control to instruct the MAC to insert the L3
checksums for TCP, UDP and ICMP packets. When automatic checksum insertion is
enabled and the input packet is an IPv6 packet without the TCP, UDP or ICMP payload, then
the MAC may incorrectly insert a checksum into the packet. For IPv6 packets without a TCP,
UDP or ICMP payload, the MAC core considers the next header (NH) field as the extension
header and continues to parse the extension header. Sometimes, the payload data in such
packets matches the NH field for TCP, UDP or ICMP and, as a result, the MAC core inserts
a checksum.

Workaround

When the IPv6 packets have a TCP, UDP or ICMP payload, enable checksum insertion for
transmit frames, or bypass checksum insertion by using the CIC (checksum insertion
control) bits in TDES0 (bits 23:22).

DocID018757 Rev 7 25/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2.8.2 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames

Description

In IPv6 frames, there can be zero or some extension headers preceding the actual IP
payload. The Ethernet MAC processes the following extension headers defined in the IPv6
protocol: Hop-by-Hop Options header, Routing header and Destination Options header.
All extension headers, except the Hop-by-Hop extension header, can be present multiple
times and in any order before the actual IP payload. The Hop-by-Hop extension header, if
present, has to come immediately after the IPv6’s main header.

The Ethernet MAC processes all (valid or invalid) extension headers including the Hop-by-
Hop extension headers that are present after the first extension header. For this reason, the
GMAC core will accept IPv6 frames with invalid Hop-by-Hop extension headers. As a
consequence, it will accept any IP payload as valid IPv6 frames with TCP, UDP or ICMP
payload, and then incorrectly update the Receive status of the corresponding frame.

Workaround

None.

2.8.3 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly 1 clock cycle after a transmission completes

Description

When the software issues a TxFIFO flush command, the transfer of frame data stops (even
in the middle of a frame transfer). The TxFIFO read controller goes into the Idle state
(TFRS=00 in ETH_MACDBGR) and then resumes its normal operation.

However, if the TxFIFO read controller receives the TxFIFO flush command exactly one
clock cycle after receiving the status from the MAC, the controller remains stuck in the Idle
state and stops transmitting frames from the TxFIFO. The system can recover from this
state only with a reset (e.g. a soft reset).

Workaround

Do not use the TxFIFO flush feature.

If TXFIFO flush is really needed, wait until the TxFIFO is empty prior to using the TxFIFO
flush command.

2.8.4 Transmit frame data corruption

Frame data corrupted when the TxFIFO is repeatedly transitioning from non-empty to empty
and then back to non-empty.

Description

Frame data may get corrupted when the TxFIFO is repeatedly transitioning from non-empty
to empty for a very short period, and then from empty to non-empty, without causing an
underflow.

This transitioning from non-empty to empty and back to non-empty happens when the rate
at which the data is being written to the TxFIFO is almost equal to or a little less than the
rate at which the data is being read.

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

26/36 DocID018757 Rev 7

This corruption cannot be detected by the receiver when the CRC is inserted by the MAC,
as the corrupted data is used for the CRC computation.

Workaround

Use the Store-and-Forward mode: TSF=1 (bit 21 in ETH_DMAOMR). In this mode, the data
is transmitted only when the whole packet is available in the TxFIFO.

2.8.5 Successive write operations to the same register might
not be fully taken into account

Description

A write operation to a register might not be fully taken into account if a previous write to the
same register is performed within a time period of 4 TX_CLK/RX_CLK clock cycles. When
this error occurs, reading the register returns the most recently written value, but the
Ethernet MAC continues to operate as if the latest write operation never occurred.

See Table 5: Impacted registers and bits for the registers and bits impacted by this limitation.

Table 5. Impacted registers and bits

Register name Bit number Bit name

DMA registers

ETH_DMABMR 7 EDFE

ETH_DMAOMR

26 DTCEFD

25 RSF

20 FTF

7 FEF

6 FUGF

4:3 RTC

GMAC registers

DocID018757 Rev 7 27/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

ETH_MACCR

25 CSTF

23 WD

22 JD

19:17 IFG

16 CSD

14 FES

13 ROD

12 LM

11 DM

10 IPCO

9 RD

7 APCS

6:5 BL

4 DC

3 TE

2 RE

ETH_MACFFR - MAC frame filter register

ETH_MACHTHR 31:0 Hash Table High Register

ETH_MACHTLR 31:0 Hash Table Low Register

ETH_MACFCR

31:16 PT

7 ZQPD

5:4 PLT

3 UPFD

2 RFCE

1 TFCE

0 FCB/BPA

ETH_MACVLANTR
16 VLANTC

15:0 VLANTI

ETH_MACRWUFFR - all remote wakeup registers

ETH_MACPMTCSR

31 WFFRPR

9 GU

2 WFE

1 MPE

0 PD

ETH_MACA0HR - MAC address 0 high register

Table 5. Impacted registers and bits (continued)

Register name Bit number Bit name

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

28/36 DocID018757 Rev 7

Workaround

Two workarounds could be applicable:

• Ensure a delay of four TX_CLK/RX_CLK clock cycles between the successive write
operations to the same register.

• Make several successive write operations without delay, then read the register when all
the operations are complete, and finaly reprogram it after a delay of four
TX_CLK/RX_CLK clock cycles.

ETH_MACA0LR - MAC address 0 low register

ETH_MACA1HR - MAC address 1 high register

ETH_MACA1LR - MAC address 1 low register

ETH_MACA2HR - MAC address 2 high register

ETH_MACA2LR - MAC address 2 low register

ETH_MACA3HR - MAC address 3 high register

ETH_MACA3LR - MAC address 3 low register

IEEE 1588 time stamp

registers

ETH_PTPTSCR

18 TSPFFMAE

17:16 TSCNT

15 TSSMRME

14 TSSEME

13 TSSIPV4FE

12 TSSIPV6FE

11 TSSPTPOEFE

10 TSPTPPSV2E

9 TSSSR

8 TSSARFE

5 TSARU

3 TSSTU

2 TSSTI

1 TSFCU

0 TSE

Table 5. Impacted registers and bits (continued)

Register name Bit number Bit name

DocID018757 Rev 7 29/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2.8.6 MCO PLL clock pins not compatible with Ethernet IEEE802.3 long term
 jitter specifications

Description

When the clock source output by the microcontroller on the MCO pin is issued from the PLL,
the MCO pin cannot be used to deliver a 50 MHz RMII clock input or a 25 MHz MII clock
input to the ethernet PHY compliant with the long term jitter maximum value for 1.4 ns
specified in the IEEE802.3 standard.

This limitation applies both to MCO1 and MCO2 pins and PLLs.

Workaround

• In MII mode

Use a 25 MHz external crystal to generate the HSE clock and output the clock signal
on the MCO pin to clock the PHY

• In RMII mode

Either use an external 50 MHz oscillator to clock the PHY or select a PHY with an
internal PLL that is able to generate the 50 MHz RMII clock.

2.9 FSMC peripheral limitations

2.9.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access to a synchronous memory, two dummy read accesses
are performed at the end of the burst cycle whatever the type of AHB burst access.
However, the extra data values which are read are not used by the FSMC and there is no
functional failure.

Example

If AHB data size = 32bit and MEMSIZE= 16bit, two extra 16-bit reads will be performed.

Workaround

None.

2.9.2 FSMC synchronous mode and NWAIT signal disabled

Description

When the FSMC synchronous mode operates with the NWAIT signal disabled, if the polarity
(WAITPOL in the FSMC_BCRx register) of the NWAIT signal is identical to that of the
NWAIT input signal level, the system hangs and no fault is generated.

Workaround

PD6 (NWAIT signal) must not be connected to AF12 and the NWAIT polarity must be
configured to active high (set WAITPOL bit to 1 in FSMC_BCRx register).

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

30/36 DocID018757 Rev 7

2.9.3 FSMC NOR Flash/PSRAM controller asynchronous access on
bank 2 to 4 when bank 1 is in synchronous mode
(CBURSTRW bit is set)

Description

If bank 1of the NOR/PSRAM controller is enabled in synchronous write mode (CBURSTRW
bit set), while all other NOR/PSRAM banks (2 to 4) are enabled in asynchronous mode, two
issues occur:

• The byte lane NBL[1:0] are not active (kept at ‘1’) for the first write access to the
asynchronous memory.

• The system hangs without any fault generation when a write access is performed to an
asynchronous memory with the extended feature enabled.

These two issues occur only when the NOR/PSRAM bank 1 is configured in synchronous
write mode (CBURSTRW bit set).

Workaround

If multiple banks are enabled with mixed asynchronous and synchronous write modes, use
any NOR/PSRAM bank for synchronous write access, except bank 1.

2.10 SDIO peripheral limitations

2.10.1 SDIO HW flow control

Description

When enabling the HW flow control by setting bit 14 of the SDIO_CLKCR register to ‘1’,
glitches can occur on the SDIOCLK output clock resulting in wrong data to be written into
the SD/MMC card or into the SDIO device. As a consequence, a CRC error will be reported
to the SD/SDIO MMC host interface (DCRCFAIL bit set to ‘1’ in SDIO_STA register).

Workaround

None.

Do not use the HW flow control. Overrun errors (Rx mode) and FIFO underrun (Tx mode)
should be managed by the application software.

2.10.2 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.

As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software. CCRCFAIL
must be cleared by setting CCRCFAILC bit of the SDIO_ICR register after reception of the
response to the CMD5 command.

DocID018757 Rev 7 31/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

2.10.3 SDIO clock divider BYPASS mode may not work properly

Description

In high speed communication mode, when SDIO_CK is equal to 48 MHz
(PLL48_output = 48 MHz), the BYPASS bit is equal to ‘1’ and the NEGEDGE bit is equal to
‘0’ (respectively bit 10 and bit 13 in the SDIO_CLKCR register), the hold timing at the I/O pin
is not aligned with the SD/MMC 2.0 specifications.

Workaround

When not using USB nor RNG, PLL48_output (SDIOCLK) frequency can be raised up to
75 MHz, allowing to reach 37.5 MHz on SDIO_CK in high speed mode. The BYPASS bit,
the CLKDIV bit and the NEGEDGE bit are equal to ‘0’.

2.10.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode

Description

When NEGEDGE bit is set to ‘1’, it may lead to invalid data and command response read.

Workaround

None. A configuration with the NEGEDGE bit equal to ‘1’ should not be used.

2.10.5 CE-ATA multiple write command and card busy signal management

Description

The CE-ATA card may inform the host that it is busy by driving the SDIO_D0 line low, two
cycles after the transfer of a write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK). When the card is in a busy state, the host must not send any
data until the BUSY signal is de-asserted (SDIO_D0 released by the card).

This condition is not respected if the data state machine leaves the IDLE state (Write
operation programmed and started, DTEN = 1, DTDIR = 0 in SDIO_DCTRL register and
TXFIFOE = 0 in SDIO_STA register).

As a consequence, the write transfer fails and the data lines are corrupted.

Workaround

After sending the write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK), the application must check that the card is not busy by polling the
BSY bit of the ATA status register using the FAST_IO (CMD39) command before enabling
the data state machine.

2.10.6 No underrun detected with wrong data transmission

Description

In case there is an ongoing data transfer from the SDIO host to the SD card and the
hardware flow control is disabled (bit 14 of the SDIO_CLKCR is not set), if an underrun
condition occurs, the controller may transmit a corrupted data block (with wrong data word)
without detecting the underrun condition when the clock frequencies have the following
relationship:

STM32F20x and STM32F21x silicon limitations STM32F20x and STM32F21x

32/36 DocID018757 Rev 7

[3 x period(PCLK2) + 3 x period(SDIOCLK)] >= (32 / (BusWidth)) x period(SDIO_CK)

Workaround

Avoid the above-mentioned clock frequency relationship, by:

• Incrementing the APB frequency

• or decreasing the transfer bandwidth

• or reducing SDIO_CK frequency

2.11 ADC limitations

2.11.1 ADC sequencer modification during conversion

Description

When a software start of conversion is used as ADC trigger, and if the ADC_SQRx or
ADC_JSQRx registers are modified during the conversion, the current conversion is reset
and the ADC does automatically restart the new conversion sequence. The hardware start
of conversion trigger is not impacted and the ADC automatically restarts the new sequence
when the next hardware trigger occurs.

Workaround

When an ADC conversion sequence is started by software, a new conversion sequence can
be restarted only by setting the SWSTART bit in the ADC_CR2 register.

2.12 DAC limitations

2.12.1 DMA underrun flag management

Description

If the DMA is not fast enough to input the next digital data to the DAC, as a consequence,
the same digital data is converted twice. In these conditions, the DMAUDR flag is set, which
usually leads to disable the DMA data transfers. This is not the case: the DMA is not
disabled by DMAUDR=1, and it keeps servicing the DAC.

Workaround

To disable the DAC DMA stream, reset the EN bit (corresponding to the DAC DMA stream)
in the DMA_SxCR register.

2.12.2 DMA request not automatically cleared by DMAEN=0

Description

if the application wants to stop the current DMA-to-DAC transfer, the DMA request is not
automatically cleared by DMAEN=0, or by DACEN=0.

DocID018757 Rev 7 33/36

STM32F20x and STM32F21x STM32F20x and STM32F21x silicon limitations

35

If the application stops the DAC operation while the DMA request is high, the DMA request
will be pending while the DAC is reinitialized and restarted; with the risk that a spurious
unwanted DMA request is serviced as soon as the DAC is re-enabled.

Workaround

To stop the current DMA-to-DAC transfer and restart, the following sequence should be
applied:

1. Check if DMAUDR is set.

2. Clear the DAC/DMAEN bit.

3. Clear the EN bit of the DAC DMA/Stream

4. Reconfigure by software the DAC, DMA, triggers etc.

5. Restart the application.

Revision history STM32F20x and STM32F21x

34/36 DocID018757 Rev 7

3 Revision history

Table 6. Document revision history

Date Revision Changes

03-Jun-2011 1 Initial release.

20-Dec-2011 2

Removed cut number in the whole document.

Added Section 2.1.1: ART Accelerator prefetch queue instruction is
not supported, Section 2.2.1: RVU and PVU flags are not reset in
STOP mode, Section 2.1.7: Configuration of PH10 and PI10 as
external interrupts is erroneous, and Section 2.10.2: Wrong
CCRCFAIL status after a response without CRC is received.

Updated Section 2.5.5: nRTS signal abnormally driven low after a
protocol violation, Section 2.8.6: MCO PLL clock pins not compatible
with Ethernet IEEE802.3 long term jitter specifications,

03-Aug-2012 3

Added Section 2.1.8: DMA2 data corruption when managing AHB
and APB peripherals in a concurrent way, Section 2.1.9: Slowing
down APB clock during a DMA transfer, Section 2.1.10: MPU
attribute to RTC and IWDG registers could be managed incorrectly,
Section 2.1.11: Delay after an RCC peripheral clock enabling,
Section 2.1.12: Battery charge monitoring lower than 2.4 V and
Section 2.1.13: Internal noise impacting the ADC accuracy.

Added Section 2.9.2: FSMC synchronous mode and NWAIT signal
disabled.

Added Section 2.10.3: SDIO clock divider BYPASS mode may not
work properly, Section 2.10.4: Data corruption in SDIO clock
dephasing (NEGEDGE) mode and Section 2.10.5: CE-ATA multiple
write command and card busy signal management.

Added Section 2.12: DAC limitations with Section 2.12.1: DMA
underrun flag management and Section 2.12.2: DMA request not
automatically cleared by DMAEN=0.

14-May-2103 4

Added silicon revision “1”.

Added Section 2.1.4: Wakeup sequence from Standby mode when
using more than one wakeup source.

Added Section 2.8.5: Successive write operations to the same
register might not be fully taken into account.

Updated description in Section 2.9.1: Dummy read cycles inserted
when reading synchronous memories. Added Section 2.9.3: FSMC
NOR Flash/PSRAM controller asynchronous access on bank 2 to 4
when bank 1 is in synchronous mode (CBURSTRW bit is set).

Added Section 2.10.6: No underrun detected with wrong data
transmission and Section 2.11.1: ADC sequencer modification during
conversion .

Updated disclaimer at the end of the document.

02-Aug-2013 5

Added Section 2.1.5: Full JTAG configuration without NJTRST pin
cannot be used and Section 2.3.5: Both SDA and SCL maximum rise
time (tr) violated when VDD_I2C bus higher than ((VDD+0.3) /
0.7) V.

DocID018757 Rev 7 35/36

STM32F20x and STM32F21x Revision history

35

03-Dec-2013 6
Added Section 2.6.1: bxCAN time triggered communication mode
not supported

28-Jan-2015 7

Added reference to revisions “V” and “2”.

Removed Appendix A: Revision code on device marking.

Updated Silicon identification and Section 1: ARM™ 32-bit Cortex®-
M3 limitations.

Updated Table 1: Device Identification and Table 4: Summary of
silicon limitations

Updated footnote 2 of Table 1.

Added Section 2.5.6: Start bit detected too soon when sampling for
NACK signal from the smartcard, Section 2.5.7: Break request can
prevent the Transmission Complete flag (TC) from being set,
Section 2.5.8: Guard time is not respected when data are sent on
TXE events and Section 2.5.9: nRTS is active while RE or UE = 0.

Table 6. Document revision history (continued)

Date Revision Changes

STM32F20x and STM32F21x

36/36 DocID018757 Rev 7

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	Table 1. Device Identification
	Table 2. Device summary
	1 ARM™ 32-bit Cortex®-M3 limitations
	Table 3. Cortex-M3 core limitations and impact on microcontroller behavior
	1.1 Cortex-M3 limitations description for the STM32F20x and STM32F21x devices
	1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register when interrupted or faulted
	1.1.2 Cortex-M3 event register is not set by interrupts and debug
	1.1.3 Cortex-M3 interrupted loads to stack pointer can cause erroneous behavior
	1.1.4 Cortex-M3 SVC and BusFault/MemManage may occur out of order

	2 STM32F20x and STM32F21x silicon limitations
	Table 4. Summary of silicon limitations
	2.1 System limitations
	2.1.1 ART Accelerator prefetch queue instruction is not supported
	2.1.2 Debugging Stop mode and system tick timer
	2.1.3 Debugging Stop mode with WFE entry
	2.1.4 Wakeup sequence from Standby mode when using more than one wakeup source
	2.1.5 Full JTAG configuration without NJTRST pin cannot be used
	2.1.6 DBGMCU_CR register cannot be read by user software
	2.1.7 Configuration of PH10 and PI10 as external interrupts is erroneous
	2.1.8 DMA2 data corruption when managing AHB and APB peripherals in a concurrent way
	2.1.9 Slowing down APB clock during a DMA transfer
	2.1.10 MPU attribute to RTC and IWDG registers could be managed incorrectly
	2.1.11 Delay after an RCC peripheral clock enabling
	2.1.12 Battery charge monitoring lower than 2.4 V
	2.1.13 Internal noise impacting the ADC accuracy

	2.2 IWDG peripheral limitation
	2.2.1 RVU and PVU flags are not reset in STOP mode

	2.3 I2C peripheral limitations
	2.3.1 SMBus standard not fully supported
	2.3.2 Start cannot be generated after a misplaced Stop
	2.3.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.3.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.3.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus higher than ((VDD+0.3) / 0.7) V

	2.4 I2S peripheral limitations
	2.4.1 Wrong WS signal generation in 16-bit extended to 32-bit PCM long synchronisation mode
	2.4.2 In I2S slave mode, WS level must be set by the external master when enabling the I2S
	2.4.3 I2S slave mode desynchronization with the master during communication

	2.5 USART peripheral limitations
	2.5.1 Idle frame is not detected if receiver clock speed is deviated
	2.5.2 In full duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	2.5.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.5.4 Break frame is transmitted regardless of nCTS input line status
	2.5.5 nRTS signal abnormally driven low after a protocol violation
	2.5.6 Start bit detected too soon when sampling for NACK signal from the smartcard
	2.5.7 Break request can prevent the Transmission Complete flag (TC) from being set
	2.5.8 Guard time is not respected when data are sent on TXE events
	2.5.9 nRTS is active while RE or UE = 0

	2.6 bxCAN peripheral limitations
	2.6.1 bxCAN time triggered communication mode not supported

	2.7 OTG_FS peripheral limitations
	2.7.1 Data in RxFIFO is overwritten when all channels are disabled simultaneously
	2.7.2 OTG host blocks the receive channel when receiving IN packets and no TxFIFO is configured
	2.7.3 Host channel-halted interrupt not generated when the channel is disabled
	2.7.4 Error in software-read OTG_FS_DCFG register values
	2.7.5 Minimum AHB frequency to guarantee correct operation of USB OTG FS peripheral

	2.8 Ethernet peripheral limitations
	2.8.1 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets without TCP, UDP or ICMP payloads
	2.8.2 The Ethernet MAC processes invalid extension headers in the received IPv6 frames
	2.8.3 MAC stuck in the Idle state on receiving the TxFIFO flush command exactly 1 clock cycle after a transmission completes
	2.8.4 Transmit frame data corruption
	2.8.5 Successive write operations to the same register might not be fully taken into account
	Table 5. Impacted registers and bits

	2.8.6 MCO PLL clock pins not compatible with Ethernet IEEE802.3 long term jitter specifications

	2.9 FSMC peripheral limitations
	2.9.1 Dummy read cycles inserted when reading synchronous memories
	2.9.2 FSMC synchronous mode and NWAIT signal disabled
	2.9.3 FSMC NOR Flash/PSRAM controller asynchronous access on bank 2 to 4 when bank 1 is in synchronous mode (CBURSTRW bit is set)

	2.10 SDIO peripheral limitations
	2.10.1 SDIO HW flow control
	2.10.2 Wrong CCRCFAIL status after a response without CRC is received
	2.10.3 SDIO clock divider BYPASS mode may not work properly
	2.10.4 Data corruption in SDIO clock dephasing (NEGEDGE) mode
	2.10.5 CE-ATA multiple write command and card busy signal management
	2.10.6 No underrun detected with wrong data transmission

	2.11 ADC limitations
	2.11.1 ADC sequencer modification during conversion

	2.12 DAC limitations
	2.12.1 DMA underrun flag management
	2.12.2 DMA request not automatically cleared by DMAEN=0

	3 Revision history
	Table 6. Document revision history (continued)

